

EDA Analytics Central - User Documentation

EDAAC is a Python package to collect, store and analyze data coming out of EDA (Electronic Design Automation) Flows.

$ pip install -U edaac

	Tutorial
	A quick tutorial extracting Design Rule Violations (DRVs) from
Cadence Innovus log file to get you up and running with EDAAC.

	User Guide
	The Full guide to EDAAC — from collecting metrics to storing them,
from querying data to advanced analytics and everything in-between.

	License
	EDAAC is open-source under BSD-3 license.

	Feedback
	EDAAC is community-driven. Please, share with us your feedback and feature requests.

Community

To get help with using EDAAC, use the GitHub Issues [https://github.com/EDAAC/EDAAC/issues] and label the issue with question.

Contributing

Yes please!

EDAAC is a young project and we are looking for contributions, additions and improvements.

The source is available on GitHub [http://github.com/EDAAC/EDAAC]
and contributions are always encouraged. Contributions can be as simple as
minor tweaks to this documentation, API names, or event the core architecture.

To contribute, fork the project on
GitHub [http://github.com/EDAAC/EDAAC] and send a
pull request.

Indices and tables

	Index

	Module Index

	Search Page

1. Tutorial

This tutorial introduces EDAAC by means of example — we will walk
through how to extract metrics from a log file that comes out of an EDA tool.

Metrics are essential information that we extract about a circuit (hardware design)
at a specific stage of the tape-out process. For example, after Logic Synthesis,
we might be interested to know the total number of standard cells used after mapping
the design to a standard cell library. After Routing, we would be concerned with
the total number of Design Rule Violations (DRVs). Instead of looking at the log
files of EDA tools and searching through them for the important piece of information,
EDAAC makes this straightforward for you.

To make use of the extracted metrics, EDAAC offers data models to store the
collected metrics into a document-based database (MongoDB). This database can be
used for further research and development of EDA tools.

1.1. Getting Started

If you haven’t installed EDAAC,
simply use pip to install it like so:

$ pip install edaac

To verify the installation:

>>> import edaac
>>> edaac.version()
EDA Analytics Central (EDAAC) v0.0.11

1.2. Extracting Metrics

In this example, we show how to extract Design Rule Violations (DRVs)
from a log file saved by Cadence Innovus.

Note

Since Cadence tools are proprietary software, we are unable to publish
raw log files outputted by the tool. We will update this tutorial with
example log files once we support open-source EDA tools.

Assuming you have generated a DRC report using a proper command within Innovus
to verify that the design meets the technology-defined constraints. The log file
is located at ./test_design.drc.rpt.

Now, you can use the below Python code to extract DRVs into a metrics dictionary:

from edaac.metrics.parsers import parse_innovus_drc_report

log_file = './test_design.drc.rpt'
metrics = parse_innovus_drc_report(log_file)
print(metrics)

An example output would be:

{
 'drv_total': 76,
 'drv_short_metal_total': 30,
 'drv_short_metal_area': 0.06930000,
 'drv_short_cut_total': 0,
 'drv_short_cut_area': 0.0,
 'drv_out_of_die_total': 0,
 'drv_out_of_die_area': 0.0,
 'drv_spacing_total': 32,
 'drv_spacing_parallel_run_length_total': 19,
 'drv_spacing_eol_total': 13,
 'drv_spacing_cut_total': 0,
 'drv_min_area_total': 14
}

What just happened?
Underneath, the function mines the log files for a number of metrics that it registered.
In its core, it heavily uses regular expressions [https://en.wikipedia.org/wiki/Regular_expression]
to look for patterns.

Why I can’t find the metric I’m looking for?
Most probably, the metric is not yet registered in the parsing function.
Help us improve the package by submitting an issue [https://github.com/EDAAC/EDAAC/issues]
with label enhancement

1.3. What’s Next?

EDAAC comes pre-loaded with a number of parsers (..and more under development).
But that’s not all. Storing metrics effeciently for post-processing is as important as
-if not more important than- collecting the metrics themeselves.

In the User Guide, we show more examples of using EDAAC for metrics processing and storage.

2. User Guide

	2.1. Installing EDAAC

	2.2. Collecting Metrics
	2.2.1. Synthsis Stats

	2.2.2. Design Rule Check

	2.2.3. Connectivity

	2.2.4. Static Timing Analysis (STA)

	2.2.5. Power

	2.2.6. Area

	2.2.7. Compute Resources

	2.3. Data Model
	2.3.1. Documents

	2.3.2. Database

	2.3.3. Examples

2.1. Installing EDAAC

To use EDAAC, you will need to download MongoDB [http://mongodb.com/]
and ensure it is running in an accessible location. You will also need
MongoEngine [http://mongoengine.org/] to use EDAAC, but if you
install EDAAC using setuptools, then the dependencies will be handled for
you.

EDAAC is available on PyPI, so you can use pip:

$ pip install edaac

Alternatively, if you don’t have setuptools installed, download it from PyPi [https://pypi.org/project/edaac/] and run

$ python setup.py install

To use the bleeding-edge version of EDAAC, you can get the source from
GitHub [http://github.com/EDAAC/EDAAC/] and install it as above:

$ git clone git://github.com/EDAAC/EDAAC
$ cd EDAAC
$ python setup.py install

2.2. Collecting Metrics

Metrics are characteristics of design artifacts, processes,
and inter-process communications during the an SoC design flow.
The main idea behind pervasively collecting metrics is to
measure the design process and quantify its Quality of Results (QoR).
This has always been a prerequisite to optimizing it and continuously
achieving maximum productivity.

EDAAC implements Metrics collection functionality in edaac.metrics
sub-package. Below, we document its functionality.

2.2.1. Synthsis Stats

We can extract useful statistics about a synthesized netlist that aid in the physical design process.

2.2.1.1. Supported Tools

	Yosys

2.2.1.2. Usage

	Generate a report from Yosys using the stat command.

	Use edaac.metrics.parsers to parse the report.

from edaac.metrics.parsers import parse_yosys_log
metrics = parse_yosys_log('/path/to/report')

	metrics is a Python dictionary of key: value pairs.

print(metrics)

2.2.1.3. Dictionary

	Key

	Meaning

	run__synth__yosys_version

	Version of yosys build used

	synth__inst__num__total

	Total numner of standard cells

	synth__inst__stdcell__area__total

	Total area of standard cells

	synth__wire__num__total

	Total number of wires

	synth__wirebits__num__total

	Total number of wirebits

	synth__memory__num__total

	Total number of memories

	synth__memorybits__num__total

	Total number of memory bits

	run__synth__warning__total

	Total number of warnings

	run__synth__warning__unique__total

	Total number of unique warnings

	run__synth__cpu__total

	CPU usage

	run__synth__mem__total

	Memory usage

2.2.1.4. Example

metrics = {
 'run__synth__yosys_version': '0.9+1706 (git sha1 UNKNOWN, gcc 7.3.1 -fPIC -Os)',
 'synth__inst__num__total': 272,
 'synth__inst__stdcell__area__total': 407.512000,
 'synth__wire__num__total': 297,
 'synth__wirebits__num__total': 343,
 'synth__memory__num__total': 0,
 'synth__memorybits__num__total': 0,
 'run__synth__warning__total': 90,
 'run__synth__warning__unique__total': 26,
 'run__synth__cpu__total': 1.21,
 'run__synth__mem__total': 28.78
}

2.2.2. Design Rule Check

Design rules are geometric constraints imposed on an SoC to ensure that
the design functions properly, reliably and can be manufactured by fabs.

A Design Rule Violation (DRV) is a record that represents a violation
to the design rules defined by the technology library used.

2.2.2.1. Supported Tools

	Cadence Innovus

2.2.2.2. Usage

	Generate a report from Innovus using the instructions here [http://www.ispd.cc/contests/19/Instruction_to_generate_violation_report_by_Innovus_2019.pdf].

	Use edaac.metrics.parsers to parse the report.

from edaac.metrics.parsers import parse_innovus_drc_report
metrics = parse_innovus_drc_report('/path/to/report')

	metrics is a Python dictionary of key: value pairs.

print(metrics)

2.2.2.3. Dictionary

	Key

	Meaning

	drv_total

	The total number of DRVs

	drv_short_metal_total

	Total numner of short metal violations

	drv_short_metal_area

	Total area of short metal violations

	drv_short_cut_total

	Total number of cut spacing violations

	drv_short_cut_area

	Total area of cut spacing violations

	drv_out_of_die_total

	Total number of components placed/routed out of die

	drv_out_of_die_area

	Total area of components placed/routed out of die

	drv_spacing_total

	Total number of spacing violations

	drv_spacing_parallel_run_length_total

	Total number of parallel run length violations

	drv_spacing_eol_total

	Total number of end-of-line spacing violations

	drv_spacing_cut_total

	Total number of cut spacing violations

	drv_min_area_total

	Total number of min-area violations

2.2.2.4. Example

metrics = {
 'drv_total': 101,
 'drv_short_metal_total': 2,
 'drv_short_metal_area': 0.02382500,
 'drv_short_cut_total': 1,
 'drv_short_cut_area': 0.0012500,
 'drv_out_of_die_total': 0,
 'drv_out_of_die_area': 0.0,
 'drv_spacing_total': 41,
 'drv_spacing_parallel_run_length_total': 7,
 'drv_spacing_eol_total': 9,
 'drv_spacing_cut_total': 25,
 'drv_min_area_total': 57
}

2.2.3. Connectivity

This ensures that the circuit components are connected as in the schematic.

2.2.3.1. Supported Tools

	Cadence Innovus

2.2.3.2. Usage

	Generate a report from Innovus using the instructions here [http://www.ispd.cc/contests/19/Instruction_to_generate_violation_report_by_Innovus_2019.pdf].

	Use edaac.metrics.parsers to parse the report.

from edaac.metrics.parsers import parse_innovus_conn_report
metrics = parse_innovus_conn_report('/path/to/report')

	metrics is a Python dictionary of key: value pairs.

print(metrics)

2.2.3.3. Dictionary

	Key

	Meaning

	conn_open_nets

	Total number of open nets

2.2.3.4. Example

metrics = {
 'conn_open_nets': 22
}

2.2.4. Static Timing Analysis (STA)

Static Timing Analysis validates the timing performance of a design by
checking all possible paths for timing violations under worst-case conditions.

The arrival time of a signal is the time elapsed for a signal to arrive at a certain point.

The required time is the latest time at which a signal can arrive without making
the clock cycle longer than desired.

The slack associated with each connection is the difference between the required time
and the arrival time.
A positive slack s at some node implies that the arrival time at that node may be increased by s,
without affecting the overall delay of the circuit.
Conversely, negative slack implies that a path is too slow,
and the path must be sped up (or the reference signal delayed)
if the whole circuit is to work at the desired speed.

The critical path is defined as the path between an input and an output with the maximum delay.
The critical path is sometimes referred to as the worst path.
If this path has a negative slack, the circuit won’t work as expected at the desired speed.

2.2.4.1. Supported Tools

	Cadence Innovus

	OpenSTA

2.2.4.2. Usage

	Generate a report from Innovus using the appropriate command. Or generate a report from OpenSTA using report_tns, report_wns and report_design_area.

	Use edaac.metrics.parsers to parse the report.

from edaac.metrics.parsers import parse_innovus_timing_report
metrics = parse_innovus_timing_report('/path/to/report')

from edaac.metrics.parsers import parse_openroad_log
metrics = parse_openroad_log('/path/to/report', 'OpenSTA')

	metrics is a Python dictionary of key: value pairs.

print(metrics)

2.2.4.3. Dictionary from Innovus

	Key

	Meaning

	timing_wns

	Worst negative slack

	timing_tns

	Total negative slack

	timing_violating_paths

	Number of violating paths

2.2.4.4. Example

metrics = {
 'timing_tns': -27.496,
 'timing_wns': -0.851,
 'timing_violating_paths': 35
}

2.2.4.5. Dictionary from OpenSTA

	Key

	Meaning

	slack__negative__total

	Total negative slack

	slack__negative__worst

	Worst negative slack

	std__area__total

	Total standard cell area

	util

	Core utilization

2.2.4.6. Example

metrics = {
 'slack__negative__total': 0.00,
 'slack__negative__worst': 0.00,
 'std__area__total': 491.0,
 'util': 8.0
}

2.2.5. Power

This reports the power consumption of the circuit.

2.2.5.1. Supported Tools

	Cadence Innovus

2.2.5.2. Usage

	Generate a report from Innovus using the appropriate command.

	Use edaac.metrics.parsers to parse the report.

from edaac.metrics.parsers import parse_innovus_power_report
metrics = parse_innovus_power_report('/path/to/report')

	metrics is a Python dictionary of key: value pairs.

print(metrics)

2.2.5.3. Dictionary

	Key

	Meaning

	power_internal_total

	Total internal power

	power_switching_total

	Total switching power

	power_leakage_total

	Total leakage power

	power_total

	Total power (sumof the above)

	power_internal_percentage

	Internal power / Total * 100.0

	power_switching_percentage

	Swithing power / Total * 100.0

	power_leakage_percentage

	Leakage power / Total * 100.0

2.2.5.4. Example

metrics = {
 'power_internal_total': 26.31116662,
 'power_switching_total': 21.61735782,
 'power_leakage_total': 13.58182182,
 'power_total': 61.51034631,
 'power_internal_percentage': 42.7752,
 'power_switching_percentage': 35.1443,
 'power_leakage_percentage': 22.0805
}

2.2.6. Area

This reports the area of the standard cells in addition to the cell count.

2.2.6.1. Supported Tools

	Cadence Innovus

2.2.6.2. Usage

	Generate the area report from Innovus using the appropriate command.

	Use edaac.metrics.parsers to parse the report.

from edaac.metrics.parsers import parse_innovus_area
metrics = parse_innovus_area_report('/path/to/report')

	metrics is a Python dictionary of key: value pairs.

print(metrics)

2.2.6.3. Dictionary

	Key

	Meaning

	area_stdcell

	Total area of standard cells (um^2)

	area_stdcell_count

	Total number of standard cells

2.2.6.4. Example

metrics = {
 'area_stdcell': 48191.040,
 'area_stdcell_count': 11306
}

2.2.7. Compute Resources

This reports the compute resources (cpu, memory) used by a flow process.

2.2.7.1. Supported Tools

	Cadence Innovus

2.2.7.2. Usage

	Dump Innovus logs (that are shown on stdout) to a file.

	Use edaac.metrics.parsers to parse the report.

from edaac.metrics.parsers import parse_innovus_log
metrics = parse_innovus_log('/path/to/report')

	metrics is a Python dictionary of key: value pairs.

print(metrics)

2.2.7.3. Dictionary

	Key

	Meaning

	compute_cpu_time_total

	Total time from all CPU cores (seconds)

	compute_real_time_total

	Total wall clock time (seconds)

	compute_mem_total

	Total memory usage (MB)

2.2.7.4. Example

metrics = {
 'compute_cpu_time_total': 540,
 'compute_real_time_total':184,
 'compute_mem_total': 2287.4
}

2.3. Data Model

Managing the storage of the collected Metrics is a challenging task.
Collecting metrics from hundreds, or even thousands, of EDA flows introduces
the pondering question: How should we structure the data to make efficient use of it in predictive analytics applications?

EDAAC implements a general-purpose data model in edaac.models
sub-package. Below, we document its functionality.

2.3.1. Documents

EDAAC’s data model is an unstructured document that represents an SoC project during its different life stages (from logic synthesis to routing).
The root of the data model is a Project document.
A Project is a container for all related artifacts of the design lifecycle.

Below is a complete birds-eye view of the Project document.

Usage: from edaac.models import Project

Every embedded document in the project has a class representation in edaac.models.
For example, the technology key in the project should be an instance of edaac.models.Technology.
Similarly, design, flow, stage and tool should be instances of
edaac.models.Design, edaac.models.Flow, edaac.models.Stage and edaac.models.Tool respectively.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

	{
 "name": "<Project Name>",
 "description": "<Project Description>",
 "technology": {
 "foundry": "<Example: TSMC>",
 "process": 65,
 "beol": "<Back End Of Line>",
 "tracl": "<The height of the track>",
 "opv": "<Operating voltage>",
 "vt": "<Voltage threshold>",
 "channel_width": "<Channel width>",
 "config": "<Configuration>",
 "version": "<Version>",
 "rag": "<Red | Amber | Green>"
 },
 "design": {
 "name": "<Design Name>",
 "rtl_files": [
 "<Absolute Path of verilog RTL file>",
 "<Absolute Path of verilog RTL file>"
],
 "netlist_file": "<Absolute path of netlist file (after synthesis)>",
 "sdc_file": "<Absolute path of constraints file (ins .sdc format)>",
 "runset_tag": "<RTL related tags for the release candidates>",
 "runset_id": "<ID of the release candidates>",
 "rtl_config": "<Configuration of RTL>",
 "rtl_tag": "<Tags for the RTL>",
 "rtl_rag": "<Red | Amber | Green>"
 },
 "flows": [
 {
 "flow_directory": "<Directory of the Flow>",
 "params": {
 "<Flow parameter>": "<value>",
 "<Flow parameter>": "<value>"
 },
 "stages": [
 {
 "name": "<Stage name>",
 "tool": {
 "name": "<Tool name>",
 "version": "<Tool version>"
 },
 "machine": "<Host name running this stage>",
 "collection_mode": "<OFFLINE_FROM_LOGS | DURING_RUN_TIME>",
 "status": "<NOT_STARTED | RUNNING | COMPLETED_SUCCESSFULLY | COMPLETED_WITH_ERRORS>",
 "log_files": [
 "<Absolute path of log file>",
 "<Absolute path of log file>"
],
 "metrics": {
 "<Metric key>": "<value>",
 "<Metric key>": "<value>"
 }
 }
],
 "log_files": [
 "<Absolute path of log file>",
 "<Absolute path of log file>"
]
 }
]
}

Note

rag: red: no verification ran on the design.
amber: alpha or beta release with some levels of verifications.
green: release candidate

2.3.2. Database

The question now is where do we store this these information? Answer: MongoDB [https://www.mongodb.com/].

2.3.2.1. Starting a MongoDB Server

Option 1: Docker

This is the easiest option to get started.
Use the following command to start a local database server

docker run -d -p 27017:27017 -v /path/to/local/folder:/data/db --name edaac_db mongo

This will start a local MongoDB server on port 27017 (the default port for MongoDB).
It will also mount a folder at /path/to/local/folder to the container to persist data when the container is stopped.

Option 2: Install Locally

Follow the instructions on the official documentation [https://docs.mongodb.com/manual/installation/].

Option 3: Cloud Instance

Create a MongoDB instance on your cloud provider account using MongoDB Atlas [https://www.mongodb.com/cloud/atlas].

2.3.2.2. Connecting to MongoDB

After starting the server, download MongoDB Compass [https://www.mongodb.com/products/compass] to graphically connect to
the database and ensure that it is running correctly.

Next, create a database with a give it a name (e.g. test_db) using MongoDB Compass.

From Python, connect to the database using:

import mongoengine as mongo

mongo.connect('test_db')

The above code will connect automatically to a MongoDB server running on the localhost with the default port, username and password.

If you are running a remote MongoDB instance, provide the credentials as below:

import mongoengine as mongo

mongo.connect('test_db', host='', port='', username='', password='')

Note

mongoengine package is installed as part of edaac dependencies.

2.3.3. Examples

2.3.3.1. Creating a Project

The only required key of a project document is its name.
All other keys can be updated later by retrieving the project, modifying it and then saving it back.

import mongoengine as mongo
from edaac.models import Project, Technology, Design

mongo.connect('test_db')

create project
project = Project(
 name='test-project',
 description='demonstrates the use of edaac models',
 technology=Technology(
 foundry='TestFoundry',
 process=45
),
 design=Design(
 name='test-design',
 rtl_files=['/path/to/rtl1.v', '/path/to/rtl2.v'],
 netlist_file='/path/to/netlist.v',
 sdc_file='/path/to/const.sdc'
)
)
project.save()
mongo.disconnect()

2.3.3.2. Update Project Data

The below code retrieves an existing project and updates its data.

import mongoengine as mongo
from edaac.models import Project, Flow, Stage, Design, Tool
from edaac.enum import StageStatus, DataCollectionMode

mongo.connect('test_db')

retrieve project
project = Project.objects(name='test-project-flows').first()
self.assertIsNotNone(project)

project.design = Design(
 name='test-design',
 rtl_files=['/path/to/rtl1.v', '/path/to/rtl2.v'],
 netlist_file='/path/to/netlist.v',
 sdc_file='/path/to/const.sdc'
)
project.flows.append(
 Flow(
 flow_directory='/path/to/flow/directory',
 params={
 'param1': 'value1',
 'param2': 'value2'
 },
 stages=[
 Stage(
 name='synth',
 tool=Tool(
 name='synth_tool',
 version='0.0.0'
),
 machine='test-machine',
 collection_mode=DataCollectionMode.OFFLINE_FROM_LOGS.name,
 status=StageStatus.COMPLETED_SUCCESSFULLY.name,
 log_files=['/path/to/log1',
 '/path/to/drc', '/path/to/timing'],
 metrics={} # should be extracted using edaac.parsers
),
 Stage(
 name='placement',
 tool=Tool(
 name='placement_tool',
 version='0.0.0'
),
 machine='test-machine',
 collection_mode=DataCollectionMode.OFFLINE_FROM_LOGS.name,
 status=StageStatus.COMPLETED_SUCCESSFULLY.name,
 log_files=['/path/to/log1',
 '/path/to/drc', '/path/to/timing'],
 metrics={} # should be extracted using edaac.parsers
),
 Stage(
 name='routing',
 tool=Tool(
 name='routing_tool',
 version='0.0.0'
),
 machine='test-machine',
 collection_mode=DataCollectionMode.OFFLINE_FROM_LOGS.name,
 status=StageStatus.COMPLETED_SUCCESSFULLY.name,
 log_files=['/path/to/log1',
 '/path/to/drc', '/path/to/timing'],
 metrics={} # should be extracted using edaac.parsers
)
],
 log_files=['/path/to/log1', '/path/to/log2']
)
)

result = project.save()
mongo.disconnect()

3. License

EDA Analytics Central (EDAAC)

Copyright (c) 2019, See AUTHORS
All rights reserved.

BSD 3-Clause License

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

4. Feedback

EDAAC is an on-going effort and we would like it to be shaped by our community.
If you have feedback for the project (e.g. feature request, metrics collection capabilities, data model improvement),
please create an issue [https://github.com/EDAAC/EDAAC/issues] on GitHub.

You can also reach out to Abdelrahman, the main contributor, at abdelrahman_hosny@brown.edu.

Index

EDAAC Documentation

This documentation is available at https://edaac.readthedocs.io/en/latest/

Build locally

Requires:

	Python 3.x

	Pip

	virtualenv

Install pre-requisites

virtualenv .venv
source .venv/bin/activate
pip install -r requirements.txt

Build

make html

 nav.xhtml

 Table of Contents

 		
 EDA Analytics Central - User Documentation

_static/plus.png

_static/file.png

_static/minus.png

