
EDA Analytics Central

Abdelrahman Hosny

Jun 08, 2020

CONTENTS:

1 Community 3

2 Contributing 5

3 Indices and tables 21

i

ii

EDA Analytics Central

EDAAC is a Python package to collect, store and analyze data coming out of EDA (Electronic Design Automation)
Flows.

$ pip install -U edaac

Tutorial A quick tutorial extracting Design Rule Violations (DRVs) from Cadence Innovus log file to get you up and
running with EDAAC.

User Guide The Full guide to EDAAC — from collecting metrics to storing them, from querying data to advanced
analytics and everything in-between.

License EDAAC is open-source under BSD-3 license.

Feedback EDAAC is community-driven. Please, share with us your feedback and feature requests.

CONTENTS: 1

EDA Analytics Central

2 CONTENTS:

CHAPTER

ONE

COMMUNITY

To get help with using EDAAC, use the GitHub Issues and label the issue with question.

3

https://github.com/EDAAC/EDAAC/issues

EDA Analytics Central

4 Chapter 1. Community

CHAPTER

TWO

CONTRIBUTING

Yes please!

EDAAC is a young project and we are looking for contributions, additions and improvements.

The source is available on GitHub and contributions are always encouraged. Contributions can be as simple as minor
tweaks to this documentation, API names, or event the core architecture.

To contribute, fork the project on GitHub and send a pull request.

2.1 Tutorial

This tutorial introduces EDAAC by means of example — we will walk through how to extract metrics from a log file
that comes out of an EDA tool.

Metrics are essential information that we extract about a circuit (hardware design) at a specific stage of the tape-out
process. For example, after Logic Synthesis, we might be interested to know the total number of standard cells used
after mapping the design to a standard cell library. After Routing, we would be concerned with the total number of
Design Rule Violations (DRVs). Instead of looking at the log files of EDA tools and searching through them for the
important piece of information, EDAAC makes this straightforward for you.

To make use of the extracted metrics, EDAAC offers data models to store the collected metrics into a document-based
database (MongoDB). This database can be used for further research and development of EDA tools.

2.1.1 Getting Started

If you haven’t installed EDAAC, simply use pip to install it like so:

$ pip install edaac

To verify the installation:

>>> import edaac
>>> edaac.version()
EDA Analytics Central (EDAAC) v0.0.11

5

http://github.com/EDAAC/EDAAC
http://github.com/EDAAC/EDAAC

EDA Analytics Central

2.1.2 Extracting Metrics

In this example, we show how to extract Design Rule Violations (DRVs) from a log file saved by Cadence Innovus.

Note: Since Cadence tools are proprietary software, we are unable to publish raw log files outputted by the tool. We
will update this tutorial with example log files once we support open-source EDA tools.

Assuming you have generated a DRC report using a proper command within Innovus to verify that the design meets
the technology-defined constraints. The log file is located at ./test_design.drc.rpt.

Now, you can use the below Python code to extract DRVs into a metrics dictionary:

from edaac.metrics.parsers import parse_innovus_drc_report

log_file = './test_design.drc.rpt'
metrics = parse_innovus_drc_report(log_file)
print(metrics)

An example output would be:

{
'drv_total': 76,
'drv_short_metal_total': 30,
'drv_short_metal_area': 0.06930000,
'drv_short_cut_total': 0,
'drv_short_cut_area': 0.0,
'drv_out_of_die_total': 0,
'drv_out_of_die_area': 0.0,
'drv_spacing_total': 32,
'drv_spacing_parallel_run_length_total': 19,
'drv_spacing_eol_total': 13,
'drv_spacing_cut_total': 0,
'drv_min_area_total': 14

}

What just happened? Underneath, the function mines the log files for a number of metrics that it registered. In its
core, it heavily uses regular expressions to look for patterns.

Why I can’t find the metric I’m looking for? Most probably, the metric is not yet registered in the parsing function.
Help us improve the package by submitting an issue with label enhancement

2.1.3 What’s Next?

EDAAC comes pre-loaded with a number of parsers (..and more under development). But that’s not all. Storing met-
rics effeciently for post-processing is as important as -if not more important than- collecting the metrics themeselves.

In the User Guide, we show more examples of using EDAAC for metrics processing and storage.

6 Chapter 2. Contributing

https://en.wikipedia.org/wiki/Regular_expression
https://github.com/EDAAC/EDAAC/issues

EDA Analytics Central

2.2 User Guide

2.2.1 Installing EDAAC

To use EDAAC, you will need to download MongoDB and ensure it is running in an accessible location. You will also
need MongoEngine to use EDAAC, but if you install EDAAC using setuptools, then the dependencies will be handled
for you.

EDAAC is available on PyPI, so you can use pip:

$ pip install edaac

Alternatively, if you don’t have setuptools installed, download it from PyPi and run

$ python setup.py install

To use the bleeding-edge version of EDAAC, you can get the source from GitHub and install it as above:

$ git clone git://github.com/EDAAC/EDAAC
$ cd EDAAC
$ python setup.py install

2.2.2 Collecting Metrics

Metrics are characteristics of design artifacts, processes, and inter-process communications during the an SoC design
flow. The main idea behind pervasively collecting metrics is to measure the design process and quantify its Quality of
Results (QoR). This has always been a prerequisite to optimizing it and continuously achieving maximum productivity.

EDAAC implements Metrics collection functionality in edaac.metrics sub-package. Below, we document its
functionality.

Synthsis Stats

We can extract useful statistics about a synthesized netlist that aid in the physical design process.

Supported Tools

• Yosys

Usage

1. Generate a report from Yosys using the stat command.

2. Use edaac.metrics.parsers to parse the report.

from edaac.metrics.parsers import parse_yosys_log
metrics = parse_yosys_log('/path/to/report')

3. metrics is a Python dictionary of key: value pairs.

print(metrics)

2.2. User Guide 7

http://mongodb.com/
http://mongoengine.org/
https://pypi.org/project/edaac/
http://github.com/EDAAC/EDAAC/

EDA Analytics Central

Dictionary

Key Meaning
run__synth__yosys_version Version of yosys build used
synth__inst__num__total Total numner of standard cells
synth__inst__stdcell__area__total Total area of standard cells
synth__wire__num__total Total number of wires
synth__wirebits__num__total Total number of wirebits
synth__memory__num__total Total number of memories
synth__memorybits__num__total Total number of memory bits
run__synth__warning__total Total number of warnings
run__synth__warning__unique__total Total number of unique warnings
run__synth__cpu__total CPU usage
run__synth__mem__total Memory usage

Example

metrics = {
'run__synth__yosys_version': '0.9+1706 (git sha1 UNKNOWN, gcc 7.3.1 -fPIC -Os)',
'synth__inst__num__total': 272,
'synth__inst__stdcell__area__total': 407.512000,
'synth__wire__num__total': 297,
'synth__wirebits__num__total': 343,
'synth__memory__num__total': 0,
'synth__memorybits__num__total': 0,
'run__synth__warning__total': 90,
'run__synth__warning__unique__total': 26,
'run__synth__cpu__total': 1.21,
'run__synth__mem__total': 28.78

}

Design Rule Check

Design rules are geometric constraints imposed on an SoC to ensure that the design functions properly, reliably and
can be manufactured by fabs.

A Design Rule Violation (DRV) is a record that represents a violation to the design rules defined by the technology
library used.

Supported Tools

• Cadence Innovus

8 Chapter 2. Contributing

EDA Analytics Central

Usage

1. Generate a report from Innovus using the instructions here.

2. Use edaac.metrics.parsers to parse the report.

from edaac.metrics.parsers import parse_innovus_drc_report
metrics = parse_innovus_drc_report('/path/to/report')

3. metrics is a Python dictionary of key: value pairs.

print(metrics)

Dictionary

Key Meaning
drv_total The total number of DRVs
drv_short_metal_total Total numner of short metal violations
drv_short_metal_area Total area of short metal violations
drv_short_cut_total Total number of cut spacing violations
drv_short_cut_area Total area of cut spacing violations
drv_out_of_die_total Total number of components placed/routed out of die
drv_out_of_die_area Total area of components placed/routed out of die
drv_spacing_total Total number of spacing violations
drv_spacing_parallel_run_length_total Total number of parallel run length violations
drv_spacing_eol_total Total number of end-of-line spacing violations
drv_spacing_cut_total Total number of cut spacing violations
drv_min_area_total Total number of min-area violations

Example

metrics = {
'drv_total': 101,
'drv_short_metal_total': 2,
'drv_short_metal_area': 0.02382500,
'drv_short_cut_total': 1,
'drv_short_cut_area': 0.0012500,
'drv_out_of_die_total': 0,
'drv_out_of_die_area': 0.0,
'drv_spacing_total': 41,
'drv_spacing_parallel_run_length_total': 7,
'drv_spacing_eol_total': 9,
'drv_spacing_cut_total': 25,
'drv_min_area_total': 57

}

2.2. User Guide 9

http://www.ispd.cc/contests/19/Instruction_to_generate_violation_report_by_Innovus_2019.pdf

EDA Analytics Central

Connectivity

This ensures that the circuit components are connected as in the schematic.

Supported Tools

• Cadence Innovus

Usage

1. Generate a report from Innovus using the instructions here.

2. Use edaac.metrics.parsers to parse the report.

from edaac.metrics.parsers import parse_innovus_conn_report
metrics = parse_innovus_conn_report('/path/to/report')

3. metrics is a Python dictionary of key: value pairs.

print(metrics)

Dictionary

Key Meaning
conn_open_nets Total number of open nets

Example

metrics = {
'conn_open_nets': 22

}

Static Timing Analysis (STA)

Static Timing Analysis validates the timing performance of a design by checking all possible paths for timing violations
under worst-case conditions.

The arrival time of a signal is the time elapsed for a signal to arrive at a certain point.

The required time is the latest time at which a signal can arrive without making the clock cycle longer than desired.

The slack associated with each connection is the difference between the required time and the arrival time. A positive
slack s at some node implies that the arrival time at that node may be increased by s, without affecting the overall delay
of the circuit. Conversely, negative slack implies that a path is too slow, and the path must be sped up (or the reference
signal delayed) if the whole circuit is to work at the desired speed.

The critical path is defined as the path between an input and an output with the maximum delay. The critical path is
sometimes referred to as the worst path. If this path has a negative slack, the circuit won’t work as expected at the
desired speed.

10 Chapter 2. Contributing

http://www.ispd.cc/contests/19/Instruction_to_generate_violation_report_by_Innovus_2019.pdf

EDA Analytics Central

Supported Tools

• Cadence Innovus

• OpenSTA

Usage

1. Generate a report from Innovus using the appropriate command. Or generate a report from OpenSTA using
report_tns, report_wns and report_design_area.

2. Use edaac.metrics.parsers to parse the report.

from edaac.metrics.parsers import parse_innovus_timing_report
metrics = parse_innovus_timing_report('/path/to/report')

from edaac.metrics.parsers import parse_openroad_log
metrics = parse_openroad_log('/path/to/report', 'OpenSTA')

3. metrics is a Python dictionary of key: value pairs.

print(metrics)

Dictionary from Innovus

Key Meaning
timing_wns Worst negative slack
timing_tns Total negative slack
timing_violating_paths Number of violating paths

Example

metrics = {
'timing_tns': -27.496,
'timing_wns': -0.851,
'timing_violating_paths': 35

}

Dictionary from OpenSTA

Key Meaning
slack__negative__total Total negative slack
slack__negative__worst Worst negative slack
std__area__total Total standard cell area
util Core utilization

2.2. User Guide 11

EDA Analytics Central

Example

metrics = {
'slack__negative__total': 0.00,
'slack__negative__worst': 0.00,
'std__area__total': 491.0,
'util': 8.0

}

Power

This reports the power consumption of the circuit.

Supported Tools

• Cadence Innovus

Usage

1. Generate a report from Innovus using the appropriate command.

2. Use edaac.metrics.parsers to parse the report.

from edaac.metrics.parsers import parse_innovus_power_report
metrics = parse_innovus_power_report('/path/to/report')

3. metrics is a Python dictionary of key: value pairs.

print(metrics)

Dictionary

Key Meaning
power_internal_total Total internal power
power_switching_total Total switching power
power_leakage_total Total leakage power
power_total Total power (sumof the above)
power_internal_percentage Internal power / Total * 100.0
power_switching_percentage Swithing power / Total * 100.0
power_leakage_percentage Leakage power / Total * 100.0

12 Chapter 2. Contributing

EDA Analytics Central

Example

metrics = {
'power_internal_total': 26.31116662,
'power_switching_total': 21.61735782,
'power_leakage_total': 13.58182182,
'power_total': 61.51034631,
'power_internal_percentage': 42.7752,
'power_switching_percentage': 35.1443,
'power_leakage_percentage': 22.0805

}

Area

This reports the area of the standard cells in addition to the cell count.

Supported Tools

• Cadence Innovus

Usage

1. Generate the area report from Innovus using the appropriate command.

2. Use edaac.metrics.parsers to parse the report.

from edaac.metrics.parsers import parse_innovus_area
metrics = parse_innovus_area_report('/path/to/report')

3. metrics is a Python dictionary of key: value pairs.

print(metrics)

Dictionary

Key Meaning
area_stdcell Total area of standard cells (um^2)
area_stdcell_count Total number of standard cells

Example

metrics = {
'area_stdcell': 48191.040,
'area_stdcell_count': 11306

}

2.2. User Guide 13

EDA Analytics Central

Compute Resources

This reports the compute resources (cpu, memory) used by a flow process.

Supported Tools

• Cadence Innovus

Usage

1. Dump Innovus logs (that are shown on stdout) to a file.

2. Use edaac.metrics.parsers to parse the report.

from edaac.metrics.parsers import parse_innovus_log
metrics = parse_innovus_log('/path/to/report')

3. metrics is a Python dictionary of key: value pairs.

print(metrics)

Dictionary

Key Meaning
compute_cpu_time_total Total time from all CPU cores (seconds)
compute_real_time_total Total wall clock time (seconds)
compute_mem_total Total memory usage (MB)

Example

metrics = {
'compute_cpu_time_total': 540,
'compute_real_time_total':184,
'compute_mem_total': 2287.4

}

2.2.3 Data Model

Managing the storage of the collected Metrics is a challenging task. Collecting metrics from hundreds, or even
thousands, of EDA flows introduces the pondering question: How should we structure the data to make efficient
use of it in predictive analytics applications?

EDAAC implements a general-purpose data model in edaac.models sub-package. Below, we document its func-
tionality.

14 Chapter 2. Contributing

EDA Analytics Central

Documents

EDAAC’s data model is an unstructured document that represents an SoC project during its different life stages (from
logic synthesis to routing). The root of the data model is a Project document. A Project is a container for all
related artifacts of the design lifecycle.

Below is a complete birds-eye view of the Project document.

Usage: from edaac.models import Project

Every embedded document in the project has a class representation in edaac.models. For example, the
technology key in the project should be an instance of edaac.models.Technology. Similarly, design,
flow, stage and tool should be instances of edaac.models.Design, edaac.models.Flow, edaac.
models.Stage and edaac.models.Tool respectively.

1 {
2 "name": "<Project Name>",
3 "description": "<Project Description>",
4 "technology": {
5 "foundry": "<Example: TSMC>",
6 "process": 65,
7 "beol": "<Back End Of Line>",
8 "tracl": "<The height of the track>",
9 "opv": "<Operating voltage>",

10 "vt": "<Voltage threshold>",
11 "channel_width": "<Channel width>",
12 "config": "<Configuration>",
13 "version": "<Version>",
14 "rag": "<Red | Amber | Green>"
15 },
16 "design": {
17 "name": "<Design Name>",
18 "rtl_files": [
19 "<Absolute Path of verilog RTL file>",
20 "<Absolute Path of verilog RTL file>"
21],
22 "netlist_file": "<Absolute path of netlist file (after synthesis)>",
23 "sdc_file": "<Absolute path of constraints file (ins .sdc format)>",
24 "runset_tag": "<RTL related tags for the release candidates>",
25 "runset_id": "<ID of the release candidates>",
26 "rtl_config": "<Configuration of RTL>",
27 "rtl_tag": "<Tags for the RTL>",
28 "rtl_rag": "<Red | Amber | Green>"
29 },
30 "flows": [
31 {
32 "flow_directory": "<Directory of the Flow>",
33 "params": {
34 "<Flow parameter>": "<value>",
35 "<Flow parameter>": "<value>"
36 },
37 "stages": [
38 {
39 "name": "<Stage name>",
40 "tool": {
41 "name": "<Tool name>",
42 "version": "<Tool version>"
43 },

(continues on next page)

2.2. User Guide 15

EDA Analytics Central

(continued from previous page)

44 "machine": "<Host name running this stage>",
45 "collection_mode": "<OFFLINE_FROM_LOGS | DURING_RUN_TIME>",
46 "status": "<NOT_STARTED | RUNNING | COMPLETED_SUCCESSFULLY |

→˓COMPLETED_WITH_ERRORS>",
47 "log_files": [
48 "<Absolute path of log file>",
49 "<Absolute path of log file>"
50],
51 "metrics": {
52 "<Metric key>": "<value>",
53 "<Metric key>": "<value>"
54 }
55 }
56],
57 "log_files": [
58 "<Absolute path of log file>",
59 "<Absolute path of log file>"
60]
61 }
62]
63 }

Note: rag: red: no verification ran on the design. amber: alpha or beta release with some levels of verifications.
green: release candidate

Database

The question now is where do we store this these information? Answer: MongoDB.

Starting a MongoDB Server

Option 1: Docker

This is the easiest option to get started. Use the following command to start a local database server

docker run -d -p 27017:27017 -v /path/to/local/folder:/data/db --name edaac_db mongo

This will start a local MongoDB server on port 27017 (the default port for MongoDB). It will also mount a folder at
/path/to/local/folder to the container to persist data when the container is stopped.

Option 2: Install Locally

Follow the instructions on the official documentation.

Option 3: Cloud Instance

Create a MongoDB instance on your cloud provider account using MongoDB Atlas.

16 Chapter 2. Contributing

https://www.mongodb.com/
https://docs.mongodb.com/manual/installation/
https://www.mongodb.com/cloud/atlas

EDA Analytics Central

Connecting to MongoDB

After starting the server, download MongoDB Compass to graphically connect to the database and ensure that it is
running correctly.

Next, create a database with a give it a name (e.g. test_db) using MongoDB Compass.

From Python, connect to the database using:

import mongoengine as mongo

mongo.connect('test_db')

The above code will connect automatically to a MongoDB server running on the localhost with the default port,
username and password.

If you are running a remote MongoDB instance, provide the credentials as below:

import mongoengine as mongo

mongo.connect('test_db', host='', port='', username='', password='')

Note: mongoengine package is installed as part of edaac dependencies.

Examples

Creating a Project

The only required key of a project document is its name. All other keys can be updated later by retrieving the project,
modifying it and then saving it back.

import mongoengine as mongo
from edaac.models import Project, Technology, Design

mongo.connect('test_db')

create project
project = Project(

name='test-project',
description='demonstrates the use of edaac models',
technology=Technology(

foundry='TestFoundry',
process=45

),
design=Design(

name='test-design',
rtl_files=['/path/to/rtl1.v', '/path/to/rtl2.v'],
netlist_file='/path/to/netlist.v',
sdc_file='/path/to/const.sdc'

)
)
project.save()
mongo.disconnect()

2.2. User Guide 17

https://www.mongodb.com/products/compass

EDA Analytics Central

Update Project Data

The below code retrieves an existing project and updates its data.

import mongoengine as mongo
from edaac.models import Project, Flow, Stage, Design, Tool
from edaac.enum import StageStatus, DataCollectionMode

mongo.connect('test_db')

retrieve project
project = Project.objects(name='test-project-flows').first()
self.assertIsNotNone(project)

project.design = Design(
name='test-design',
rtl_files=['/path/to/rtl1.v', '/path/to/rtl2.v'],
netlist_file='/path/to/netlist.v',
sdc_file='/path/to/const.sdc'

)
project.flows.append(

Flow(
flow_directory='/path/to/flow/directory',
params={

'param1': 'value1',
'param2': 'value2'

},
stages=[

Stage(
name='synth',
tool=Tool(

name='synth_tool',
version='0.0.0'

),
machine='test-machine',
collection_mode=DataCollectionMode.OFFLINE_FROM_LOGS.name,
status=StageStatus.COMPLETED_SUCCESSFULLY.name,
log_files=['/path/to/log1',

'/path/to/drc', '/path/to/timing'],
metrics={} # should be extracted using edaac.parsers

),
Stage(

name='placement',
tool=Tool(

name='placement_tool',
version='0.0.0'

),
machine='test-machine',
collection_mode=DataCollectionMode.OFFLINE_FROM_LOGS.name,
status=StageStatus.COMPLETED_SUCCESSFULLY.name,
log_files=['/path/to/log1',

'/path/to/drc', '/path/to/timing'],
metrics={} # should be extracted using edaac.parsers

),
Stage(

name='routing',
tool=Tool(

(continues on next page)

18 Chapter 2. Contributing

EDA Analytics Central

(continued from previous page)

name='routing_tool',
version='0.0.0'

),
machine='test-machine',
collection_mode=DataCollectionMode.OFFLINE_FROM_LOGS.name,
status=StageStatus.COMPLETED_SUCCESSFULLY.name,
log_files=['/path/to/log1',

'/path/to/drc', '/path/to/timing'],
metrics={} # should be extracted using edaac.parsers

)
],
log_files=['/path/to/log1', '/path/to/log2']

)
)

result = project.save()
mongo.disconnect()

2.3 License

EDA Analytics Central (EDAAC)

Copyright (c) 2019, See AUTHORS All rights reserved.

BSD 3-Clause License

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

2.3. License 19

EDA Analytics Central

2.4 Feedback

EDAAC is an on-going effort and we would like it to be shaped by our community. If you have feedback for the project
(e.g. feature request, metrics collection capabilities, data model improvement), please create an issue on GitHub.

You can also reach out to Abdelrahman, the main contributor, at abdelrahman_hosny@brown.edu.

20 Chapter 2. Contributing

https://github.com/EDAAC/EDAAC/issues
mailto:abdelrahman_hosny@brown.edu

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

21

	Community
	Contributing
	Indices and tables

